Basics of Atmospheric Burner Design

Quick Dive into Basic Concepts

Basic Principles

Coordinates: (x,y,z)	Time : t	Density: p	Pressure	e:p Re	ynolds N	lumber:	Re
Velocity Componen	ts: (u,v,w)	Stress: T	Heat F	lux: q l	Prandtl	Number	: Pr
Continuity:	$\frac{\partial \rho}{\partial t} + \frac{\partial (t)}{\partial t}$	$\frac{\partial u}{\partial x} + \frac{\partial (\rho v)}{\partial v}$	$+\frac{\partial(\rho w)}{\partial z}=$	0			225 52
X – Momentum: d							
Y – Momentum: d	$\frac{(\rho v)}{\partial t} + \frac{\partial (\rho u v)}{\partial x}$	$\frac{\partial}{\partial y} + \frac{\partial(\rho v^2)}{\partial y} +$	$\frac{\partial(\rho vw)}{\partial z} =$	$-\frac{\partial p}{\partial y}+\frac{1}{Re}$	$\frac{\partial \tau_{xy}}{\partial x} +$	$\frac{\partial \tau_{yy}}{\partial y} +$	$\frac{\partial \tau_{yz}}{\partial z}$
Z – Momentum: <u>∂()</u>	$\frac{\partial w}{\partial t} + \frac{\partial (\rho u w)}{\partial x}$	$\frac{\partial}{\partial y} + \frac{\partial(\rho vw)}{\partial y} +$	$\frac{\partial(\rho w^2)}{\partial z} =$	$-\frac{\partial p}{\partial x} + \frac{1}{Re}$	$-\int \frac{\partial \tau_{xx}}{\partial x} +$	$-\frac{\partial \tau_{yz}}{\partial y}+$	$\frac{\partial \tau_{zz}}{\partial z}$
fotal Energy – Et:	$\frac{\partial(E_T)}{\partial(E_T)} + \frac{\partial(u)}{\partial(u)}$	$\frac{E_T}{E_T} + \frac{\partial (\nu E_T)}{\partial \nu}$	$+\frac{\partial(wE_T)}{\partial}$	$=-\frac{\partial(up)}{\partial(up)}$	$\frac{\partial(vp)}{\partial(vp)}$	$-\frac{\partial(wp)}{\partial(wp)}$	
Fotal Energy – Et: + $\frac{1}{Re_r} \left[\frac{\partial}{\partial x} \right]$	$\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$	$\frac{\partial x}{\partial y} + w \tau_{yz} + \frac{\partial}{\partial y} ($	dz [u τ _{xy} + ν τ _{yy}	∂x + w τ_{yz}) + $\frac{1}{2}$	$\frac{\partial y}{\partial z}(u \tau_{xz})$	dz +ντ _{yz} + 1	ν τ _{zz})

Types of Burners

- Atmospheric/natural draft
 - Most common, uses air at atmospheric pressures for mixing
 - ► Tens of thousands of BTU/hr
- Power
 - Used in large industrial application, uses blowers
 - ▶ Millions of BTU/hr

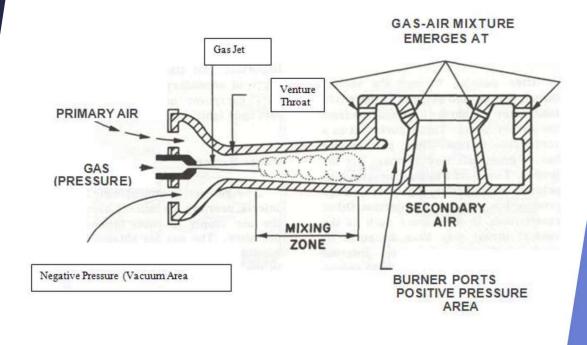
Why Atmospheric?

- Versatility can be made in a wide range of sizes, power outputs, and use a variety of fuels
- Simple construction can have no moving parts, other than controls
- Cheap
- Safe usually operate a lower pressures

Characteristics of a Good Burner

- Controllability over a wide pressure range, no flash back
- Uniform distribution of heat
- Complete combustion no sooty flames or CO
- No lifting of the flame exit speed of the fuel/air mix is too fast at the ports
- No floating flames inadequate primary air
- Rapid ignition
- Quiet operation
- Durable reliable operation through thousands of heating/cooling cycles

Burner Types


- Drilled Port
- Slotted Port
- Ribbon Port
- Single/Monoport
- Infrared
- Jet/Inshot
- Impingement
- Target
- Pilot

The Role of Air

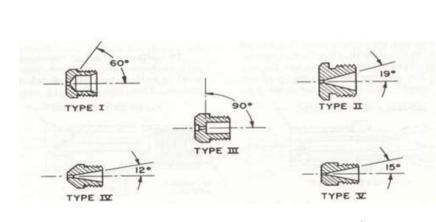
- Three Types of Air
 - Primary air introduced to fuel stream before mixing and emitting from burner ports
 - Secondary other air, can be from any other source
- Primary + Secondary = Total
- Nat gas: 10:1
- Propane: 20:1
- Butane: 30:1
- Anything more is Excess Air

Air injecting ability =
$$\frac{\sqrt[4]{pS_g}}{\sqrt{H}}$$

Ignition Methods

Pilot

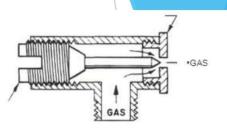
Small flame around 500-1000 Btu/Hr


Sparker

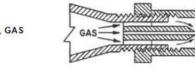
- Electrical discharge, high voltage/low amperage (usu. ~15k VDC)
- Above breakdown voltage
- Combination

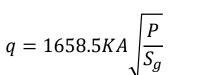

Parts in Detail - Orifice

- Responsible for regulating gas flow
- Coefficient of Discharge, K, depends on orifice design
- Fixed and Nonadjustable Orifices
- Possible issues:
 - Orifice and mixing body misalignment
 - Obstructed orifice


ORIFICE TYPE	ORIFICE DISCHARGE COEFFICIENT
	0.80
	0.82
ш	0.65
IV	0.83
v	0.83

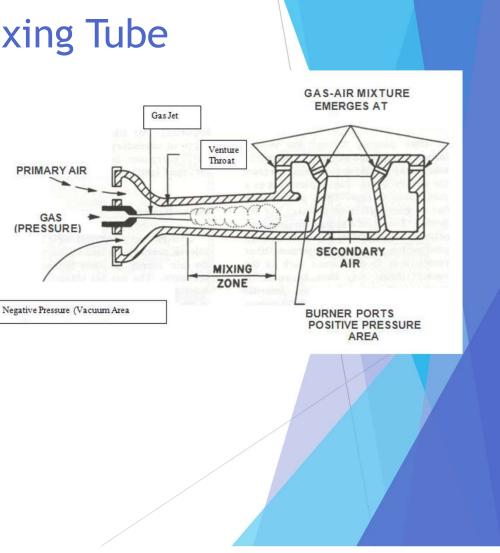
GAS


MOVABLE ORIFICE HOOD


- FIXED NEEDLE

L-MOVABLE NEEDLE

.GAS


Parts in Detail - Venturi/Mixing Tube

- Venturi accelerates fuel/air mix, aiding in homogenization of the gases
- Throat/port ratio
 - 0.22-0.91 for Nat Gas
 - 0.24-0.68 for manufactured gas
- Mixing tube angle of divergence usu. ~2°-3°
- Straight mixing tubes are not as good as venturi type

$$P = \frac{\sqrt[4]{pS_g}}{\sqrt{H}} * \frac{2.5 * 10^{-5} A_m A_p}{\sqrt{R}} * \frac{23.24}{\sqrt{T}}$$

 $\label{eq:p} P = \{[(pd)^{0.25}/(H)^{0.50}][2.5X10^{5}(AmAp)/(R)^{0.50}][(540)^{0.50}/(T)^{0.50}]\}$ For mixing tube internal slope <3.5 deg

The first term has significant effect on burner performance

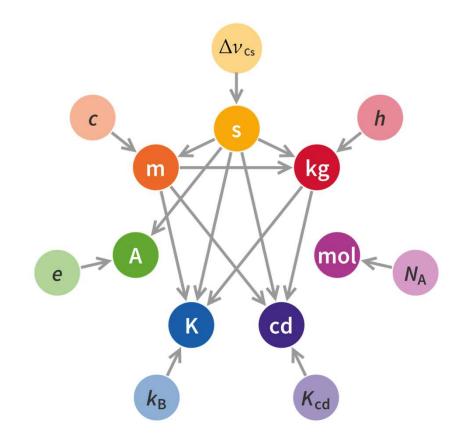
Parts in Detail - Burner Ports

- Burner port diameter has no significant effect on performance
- Burner depth has pronounced effect on injection of primary air
- Spacing
 - In our scales, the closer the ports are spaced, the greater the primary air needed, though not by much. Single percentage point increases
 - Ports too close together will result in slightly yellow-tipped flame

PRIMARY AIR INJECTED, % OBSERVED					
PORT DEPTH	20,000 Btu/Hr	30,000 Btu/Hr per square inch			
#36 Drill Size	per square inch				
	of port area	of port area			
0.0469	108.500	80.800			
0.1250	107.100	79.400			
0.2500	102.000	76.800			
0.3125	100.000	75.900			
0.3750	97.900	73.500			
0.5000	95.900	71.900			
0.7500	93.500	69.500			

Realities of Atmospheric Burners

- A lot of the designs are experimentally derived, due to the nature of fluid mechanics (Navier-Stokes)
- These designs were well-defined by the 1950's
- Making your own burners will take some trial and error
- One of those sciences, like thermodynamics, that has lots of tables


My Suggestions for Model Burners

- Use a regulator, if possible
- Try to incorporate venturi
- Lengthen mixing tube
 - Is a mixing "coil" possible?
 - Mixing baffles to increase turbulence?
- Adjustable choke might help
 - Primary air ports on sides and rear of orifice
- Do not recommend Type III orifice
 - Adjustable orifice might be ideal, good luck making one so small

Next Year's Topic

Units of Measure, US Customary Units and their SI Derivatives

