Wheels and Track

Bob Sorenson

Objectives

- Rail Profile
- Track Structure
- Track Geometry
- Why 4’-8 1/2"?
- Switches
- Wheels Profile
- Gauge 1

Rail Profile

Rail Weights and Sizes

Expressed as weight (pounds) per yard

$100 \mathrm{lb} / \mathrm{yd}$ Light freight, low use, light rail
$120 \mathrm{lb} / \mathrm{yd}$ Lower speed freight, branch lines or rapid transit
127 lb/yd New York Central Railroad main line
$130 \mathrm{lb} / \mathrm{yd}$ Main line service
155 lb/yd Pennsylvania Railroad

Rail Weights and Sizes

Pennsylvania Railroad profile

New York Central profile

Track Structure

Track Structure

Rail length -- 39 feet in 1880, 75 feet in 1940

Track Structure

Rail length -- 400 yards

Track Geometry, Gauge

Track Geometry, Common Gauges

Gauge	Installation (miles)	Usage	\% world
$4 \mathrm{ft}, 81 / 2$ in	450,000	North America, Central and Northern Europe, Middle East, Northwest Africa, China, Australia, Japan (Shinkansen)	55
$4 \mathrm{ft}, 1127 / 32$ in	140,000	Russia, Central Asia	17.2
$5 \mathrm{ft}, 6 \mathrm{in}$	83,000	India, South Asia, Agentina, Chile, San Fransisco	11.4
$3 \mathrm{ft}, 6 \mathrm{in}$	70,000	Southern and Central Africa, Indonesia, Japan, Taiwan, Philippines, New Zealand, Australia	9
$3 \mathrm{ft}, 33 / 8 \mathrm{in}$	59,000	Brazil, South America, Spain, Switzerland, Thailand, Indochina, Bangladesh, East Africa	7

Track Geometry, Grades

Example: 100 foot run with 3 feet rise is $3 / 100=0.03$ or 3.0%

Steepest mainline grade in the US is the Saluda grade NC at 5.1%

Track Geometry, Curves

Degree of curve	Radius	Application
$1^{\circ} 00^{\prime}$	5730 feet	Mainline Freight
$7^{\circ} 30^{\prime}$	764 feet	Yards
$12^{\circ} 30^{\prime}$	459 feet	Slow Speed Spurs

Track Geometry, Cant

-- Improve distribution of the load across both rails
-- Reduce wear on rails and wheels
-- Neutralize the effect of lateral forces
-- Improve passenger comfort

Why 4 feet, 8 1/2 inches?

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore \& Ohio adopts 4' 8 1/2"

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore \& Ohio adopts 4' 8 1/2"
- Civil War brings standardization.

Why 4 feet, 8 1/2 inches?

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton \& Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore \& Ohio adopts 4' 8 1/2"
- Civil War brings standardization.
- Narrow gauge tried and failed

Switches (a.k.a. Turnouts)

Parts of a Switch

Direction of Travel

Switch Frog

Switch Frog

Switch Frog

Frog \#	Angle in degress	Radius in inches G Scale	Radius in feet prototype
4	14.04	56	151
6	9.46	126	339
8	7.13	224	603
10	5.71	350	942
12	4.76	504	1356

Stub Switch

Wheels

Wheel Gauge

Wheel Profile

wide flange

Wheel Flange
 wide

Wheel Contact

Hunting Oscillation

"Garden" Gauge Practice

Published Practices

- Association of 16 mm Narrow Gauge Modelers (16mm)
- National Model Railroad Association (NMRA)
- Gauge One Model Railway Association (G1MRA)

16mm Practice

45 mm gauge

root radius 0.5 mm

NMRA Practice

Standard S-4.2, Regular Flange

Scale	Scale Ratio	Standard S-4.2 Wheels using (inch) Tolerance								
		B			N		$\frac{\text { D }}{\text { Max }}$	T		
		Target	Plus	Minus	Min	Max		Nom	Plus	Minus
LS	Varied	1.575	0.019	0.005	0.236	0.271	0.066	0.059	0.002	0.018

Scale	Scale Ratio	Standard S-4.2 Wheels using Metric (mm) Tolerance								
		B			N		D	T		
		Target	Plus	Minus	Min	Max	Max	Nom	Plus	Minus
LS	Varied	40.01	0.48	0.13	5.99	6.88	1.68	1.50	0.05	0.46

NMRA Practice

Standard S-4.3, Deep Flange

Scale	Scale Ratio	Standard S4.3 Wheels using Imperial (inch) Tolerance								
		B			N		D	T		
		Target	Plus	Minus	Min	Max	Max	Nom	Plus	Minus
LSdf	Varied	1.575	0.019	0.015	0.236	0.271	0.118	0.074	0.002	0.014

Scale	Scale Ratio	Standard S4.3 Wheels using Metric (mm) Tolerance								
		B			N		D	T		
		Target	Plus	Minus	Min	Max	Max	Nom	Plus	Minus
LSdf	Varied	40.00	0.48	0.38	6.00	6.88	3.00	1.88	0.05	0.36

Description	MM		Inches	
Gauge	45.0	$+0 /-0.5$	1.772	$+0 /-0.020$
Back to Back	40.0	$+0.5 /-0$	1.574	$+0.020 /-0$
W - Wheel width	6.0	$+0 /-0.5$	0.236	$+0 /-0.020$
H - Hub projection	0.5	$+/-0$	0.020	$+/-0$
D - Flange depth	2.0	\max	0.079	\max
E - Flange width	1.5	$+0 /-0.5$	0.060	$+0 /-0.020$
R - Root Radius	0.5	\min	0.020	\min

Conclusion

- Back to Back, tread width and flange widths are all nearly identical
- Flange depths vary
- Only G1MRA specifies tread angle and flange angle
- G1MRA preferred.

Questions??

