# Wheels and Track

Bob Sorenson

### Objectives

- Rail Profile
- Track Structure
- Track Geometry
- Why 4' 8 1/2"?
- Switches
- Wheels Profile
- Gauge 1

#### Rail Profile



### Rail Weights and Sizes

#### Expressed as weight (pounds) per yard

- 100 lb/yd Light freight, low use, light rail
- 120 lb/yd Lower speed freight, branch lines or rapid transit
- 127 lb/yd New York Central Railroad main line
- 130 lb/yd Main line service
- 155 lb/yd Pennsylvania Railroad

#### Rail Weights and Sizes



#### **Rail Height = Foot Width**

#### Pennsylvania Railroad profile



#### New York Central profile



#### Track Structure



#### Track Structure



Rail length -- 39 feet in 1880, 75 feet in 1940

#### Track Structure



Rail length -- 400 yards

### Track Geometry, Gauge



## Track Geometry, Common Gauges

| Gauge             | Installation<br>(miles) | Usage                                                                                                                 | % world |
|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|
| 4 ft, 8 1/2 in    | 450,000                 | North America, Central and Northern<br>Europe, Middle East, Northwest Africa,<br>China, Australia, Japan (Shinkansen) | 55      |
| 4 ft, 11 27/32 in | 140,000                 | Russia, Central Asia                                                                                                  | 17.2    |
| 5 ft, 6 in        | 83,000                  | India, South Asia, Agentina, Chile, San<br>Fransisco                                                                  | 11.4    |
| 3 ft, 6 in        | 70,000                  | Southern and Central Africa,<br>Indonesia, Japan, Taiwan, Philippines,<br>New Zealand, Australia                      | 9       |
| 3 ft, 3 3/8 in    | 59,000                  | Brazil, South America, Spain,<br>Switzerland, Thailand, Indochina,<br>Bangladesh, East Africa                         | 7       |

### Track Geometry, Grades



Example: 100 foot run with 3 feet rise is 3/100 = 0.03 or 3.0%

Steepest mainline grade in the US is the Saluda grade NC at 5.1%

#### Track Geometry, Curves



| Degree of curve | Radius    | Application      |
|-----------------|-----------|------------------|
| 1° 00'          | 5730 feet | Mainline Freight |
| 7° 30'          | 764 feet  | Yards            |
| 12° 30'         | 459 feet  | Slow Speed Spurs |

#### Track Geometry, Cant



- -- Improve distribution of the load across both rails
- -- Reduce wear on rails and wheels
- -- Neutralize the effect of lateral forces
- -- Improve passenger comfort

• Width of a Roman war chariot wheels -- No

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore & Ohio adopts 4' 8 1/2"

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore & Ohio adopts 4' 8 1/2"
- Civil War brings standardization.

- Width of a Roman war chariot wheels -- No
- Width of a standard Roman wagon -- Maybe
- George Stevenson designs the Stockton & Darlington Railway, selects 4 feet 8 inches
- Broad gauge tried and failed -- politics
- U.S. railroads initially had no standards
- Baltimore & Ohio adopts 4' 8 1/2"
- Civil War brings standardization.
- Narrow gauge tried and failed

#### Switches (a.k.a. Turnouts)

## Parts of a Switch





# Switch Frog



## Switch Frog



## Switch Frog



| Erog # | Angle in | Radius in inches | Radius in feet |
|--------|----------|------------------|----------------|
| Frog # | degress  | G Scale          | prototype      |
| 4      | 14.04    | 56               | 151            |
| 6      | 9.46     | 126              | 339            |
| 8      | 7.13     | 224              | 603            |
| 10     | 5.71     | 350              | 942            |
| 12     | 4.76     | 504              | 1356           |

## Stub Switch



#### Wheels





# Wheel Profile

#### wide flange



# Wheel Flange

#### wide



## Wheel Contact





#### "Garden" Gauge Practice

## **Published Practices**

- Association of 16mm Narrow Gauge Modelers (16mm)
- National Model Railroad Association (NMRA)
- Gauge One Model Railway Association (G1MRA)

### 16mm Practice



## NMRA Practice

Standard S-4.2, Regular Flange



|       |                | Standard S-4.2 Wheels using (inch) Tolerance |       |       |       |       |         |       |       |       |  |  |
|-------|----------------|----------------------------------------------|-------|-------|-------|-------|---------|-------|-------|-------|--|--|
| Scale | Scale<br>Ratio |                                              | В     |       | 1     | N     | D       |       | Т     |       |  |  |
|       | Natio          | Target                                       | Plus  | Minus | Min   | Max   | Max Nom |       | Plus  | Minus |  |  |
| LS    | Varied         | 1.575                                        | 0.019 | 0.005 | 0.236 | 0.271 | 0.066   | 0.059 | 0.002 | 0.018 |  |  |

| Scale |                | Standard S-4.2 Wheels using Metric (mm) Tolerance |      |       |      |      |      |           |      |       |  |  |
|-------|----------------|---------------------------------------------------|------|-------|------|------|------|-----------|------|-------|--|--|
|       | Scale<br>Ratio | B                                                 |      | N     |      | D    | Т    |           |      |       |  |  |
|       | Natio          | Target                                            | Plus | Minus | Min  | Max  | Max  | Max Nom F | Plus | Minus |  |  |
| LS    | Varied         | 40.01                                             | 0.48 | 0.13  | 5.99 | 6.88 | 1.68 | 1.50      | 0.05 | 0.46  |  |  |

## NMRA Practice

#### Standard S-4.3, Deep Flange



| S     | Scale          | Standard S4.3 Wheels using Imperial (inch) Tolerance |       |       |       |       |       |       |       |       |
|-------|----------------|------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Scale | Scale<br>Ratio |                                                      | В     |       | Ν     |       | D     | Т     |       |       |
|       | natio          | Target                                               | Plus  | Minus | Min   | Max   | Max   | Nom   | Plus  | Minus |
| LSdf  | Varied         | 1.575                                                | 0.019 | 0.015 | 0.236 | 0.271 | 0.118 | 0.074 | 0.002 | 0.014 |

|       | Scale  |        | Standard S4.3 Wheels using Metric (mm) Tolerance |       |      |      |      |      |      |       |  |  |
|-------|--------|--------|--------------------------------------------------|-------|------|------|------|------|------|-------|--|--|
| Scale | Ratio  |        | В                                                |       |      | N    | D    |      | Т    |       |  |  |
|       | natio  | Target | Plus                                             | Minus | Min  | Max  | Max  | Nom  | Plus | Minus |  |  |
| LSdf  | Varied | 40.00  | 0.48                                             | 0.38  | 6.00 | 6.88 | 3.00 | 1.88 | 0.05 | 0.36  |  |  |

### **G1MRA** Practice



| Description        | MM   |         | Inches | 15          |
|--------------------|------|---------|--------|-------------|
| Gauge              | 45.0 | +0/-0.5 | 1.772  | +0 / -0.020 |
| Back to Back       | 40.0 | +0.5/-0 | 1.574  | +0.020/-0   |
| W - Wheel width    | 6.0  | +0/-0.5 | 0.236  | +0/-0.020   |
| H - Hub projection | 0.5  | +/- 0   | 0.020  | +/-0        |
| D - Flange depth   | 2.0  | max     | 0.079  | max         |
| E - Flange width   | 1.5  | +0/-0.5 | 0.060  | +0/-0.020   |
| R - Root Radius    | 0.5  | min     | 0.020  | min         |

#### Conclusion

- Back to Back, tread width and flange widths are all nearly identical
- Flange depths vary
- Only G1MRA specifies tread angle and flange angle
- G1MRA preferred.

# Questions??